

GOVERNOR	
	PUMPING 1 horsepower (Hp) = 746 watts = 0.746 kw = 3,960 gal/min/ft
rces Control Board	Water Hp = $(GPM) \times (Total Head, ft)$
Rectangular Basin, Volume, gal =	(3,960 gal/min/ft)
(Length, ft) x (Width, ft) x (Height, ft) x 7.48 gal/cu. ft.	Brake Hp = (GPM)x(TotalHead,ft) (3,960) x (Pump % Efficiency)
Cylinder , Volume, gal = (0.785) x (Dia, ft) ² x (Height, Depth, or Length in ft.) x 7.48 gal/ft ³	Motor Hp = (GPM)x(Total Head,ft) (3,960) x Pump % Eff. x Motor % Eff.
Time, Hrs. = <u>Volume, gallons</u> (Pumping Rate, GPM, x 60 Min/Hr)	<pre>"Wire-to-Water" Efficiency</pre>
Supply, Hrs. = <u>Storage Volume, Gals</u> (Flow In, GPM - Flow Out, GPM) x 60 Min/Hr)	Cost, \$ = (Hp) x (0.746 Kw/Hp) x (Operating Hrs.) x cents/Kw-Hr
SOLUTIONS	Flow, velocity, area
Lbs/Gal = (Solution %) x 8.34 lbs/gal x Specific Gravity 100	$Q = A \times V$ Quantity = Area x Velocity
	Flow (ft ³ /sec) = Area(ft ²) x Velocity (ft/sec)
Lbs Chemical = Specific Gravity x 8.34 lbs/gallons x Solution(gal)	MGD x 1.55 cuft/sec/MGD = cu ft/sec = ft/sec
	.785 x pipe diameter ft x pipe diameter ft = $sqft$
Specific Gravity = <u>Chemical Wt. (lbs/gal)</u>	Conoral
8.34 (lbs/gal)	<u>General</u> (\$)Cost/day = lbs/day x (\$)Cost/lb
% of Chemical = (Dry Chemical, lbs) x 100	(\$)Cost/day = lbs/day x (\$)Cost/lb
in Solution (Dry Wt. Chemical, lbs)+(Water, lbs)	Removal, Percent = <u>(In - Out)</u> x 100 In
GPD = (MGD) x (ppm or mg/L) x 8.34 lbs/gal (% purity) x Chemical Wt.(lbs/gal)	Specific Capacity, GPM/ft . = <u>Well Yield, GPM</u> Drawdown, ft.
GPD = (Feed, ml/min. x 1,440 min/day)	Gals/Day = (Population) x (Gals/Capita/Day)
(1,000 ml/Lx 3.785 L/gal)	GPD = (Meter Read 2 - Meter Read 1)
	(Number of Days)
Two-Normal Equations: a) $C_1V_1 = C_2V_2$ $\frac{Q_1}{V_1} = \frac{Q_2}{V_2}$	Volume, Gals = GPM x Time, minutes
b) $C_1V_1+C_2V_2 = C_3V_3$	SCADA = 4 mA to 20 mA analog signal
C = Concentration V = Volume Q = Flow	(live signal mA - 4 mA offset) x process unit and range (16 mA span)
	4 mA = 0 20 mA full-range

State Water Resources Control Board

UNITS AND CONVERSION FACTORS

1 cubic foot of water weighs 62.3832 lb 1 gallon of water weighs 8.34 lb 1 liter of water weighs 1,000 gm 1 mg/L = 1 part per million (ppm)1% = 10,000 ppm ft^2 = square feet and ft^3 = cubic feet 1 mile = 5.280 feet (ft) $1 \text{ yd}^3 = 27 \text{ ft}^3$ and 1 yard = 3 feet1 acre (a) = 43,560 square feet (ft²) 1 acre foot = 325,851 gallons 1 cubic foot (ft^3) = 7.48 gallons (gal) 1 gal = 3.785 liters (L)1 L = 1,000 milliliters (ml)1 pound (lb) = 454 grams (gm) 1 lb = 7.000 grains (gr)1 grain per gallon (gpg) = 17.1 mg/L 1 gm = 1.000 milligrams (mg)1 day = 24 hr = 1,440 min = 86,400 sec1,000,000 gal/day ÷ 86,400 sec/day ÷ 7.48 gal/cu ft = 1.55 cu ft/sec/MGD

CHLORINATION

Dosage, mg/l = (Demand, mg/l) + (Residual, mg/l) (Gas) lbs = Vol, MG x ppm or mg/L x 8.34 lbs/gal GPD = HTH Solid (lbs) = (Vol, MG) x (ppm or mg/L) x 8.34 lbs/gal GPD = (% Strength / 100)

Liquid (gal) = (Vol, MG) x (ppm or mg/L) x 8.34 lbs/gal (% Strength /100) x Chemical Wt. (lbs/gal)

PRESSURE

PSI = (Head, ft.) **PSI =** Head. ft. \times 0.433 PSI/ft. 2.31ft./psi

Ibs Force = $(0.785) (D, ft.)^2 x 144 in^2/ft^2 x PSI.$